
This is Advanced Incident Detection and Threat Hunting using Sysmon (and
Splunk)

1

My name is Tom Ueltschi and I’ve been working for Swiss Post for 10 years.
My current focus is: Malware Analysis, Threat Intel, Threat Hunting and Red
Teaming.
Some of you may know me from my Ponmocup talks or trust groups that I’m
active in.
I’m a member of FIRST SIG for malware analysis and red teaming.
I’ve given a presentation with same title at Botconf last year, but this talk is
mostly new.

2

First I’ll give a brief intro on Sysmon and public resources most relevant to the
topics covered.
Then I’ll cover some examples from my Botconf talk.
This first half of the 117 slides I’ll go through fairly quickly.
I’ll try to spend more time on the second half covering examples for advanced
detection and threat hunting.
Examples will cover: delivery, persistence, recon, latmov, named pipes, mimikatz

3

We are standing on the shoulders of giants.
It’s hard to come up with something totally new, so it’s good to know what’s
already available and share how to make best use of it.

4

David Bianco blogged about the Pyramid of Pain over 4 years ago.
I hope most everyone is familiar with it by now.
My goal is to detect Tools and TTPs which are the most challenging.

5

Sqrrl has many great resources on threat hunting.
This is a slide from their «Threat Hunting and UEBA» webinar showing the 3
loops for hunting, content dev, automated detection.
Most of my examples could fall into «rules and analytics» for «autom
detection», but the left two loops were necessary to develop these.

6

This is a short paper on «how to decide what to hunt for and how often».
Step 1 is to «choose your favorite attack model».

7

They chose the «ATT&CK from MITRE», which is also what I’ll use for this talk.

8

This image is from the MITRE ATT&CK project, which shows the list of tactics
most commonly used for post-exploitation.
In my examples I’ll cover persistence, discovery, lateral movement, execution,
C&C and credential access.

9

This is the Technique matrix showing different techniques for each tactics
column.

10

The whole T&T matrix is even much bigger and hardly fits on one screen.
It also changed quite a bit over time,
previous versions had techniques spanning multiple tactics columns.

11

The T&T matrix is great for doing «defensive gap analysis».
It makes for really nice graphics in reports.

12

Here’s again an older version of the matrix

13

Doing an analysis of «Att&ck Based Detection Capabilities» makes a really nice
graphic for management
and shows where the strengths and weaknesses of security posture lies.

14

The people behind the MITRE ATTACK project also welcome contributions and
are very responsive.

15

MITRE also has another project: Cyber Analytics Repository or CAR for short.

16

And during this presentation, when I say CAR I don’t mean this kinda car.

17

CARET is the «CAR Exploration Tool» which maps analytics to the techniques
from the T&T matrix.

18

Here is an example CAR «quick execution of a series of suspicious commands»,
which maps to a large number of Discovery techniques as well as some
techniques from many other tactics.
This is one of the examples covered later on.

19

Here is another example CAR «remotely launched executables via WMI»,
which maps to a single technique from Execution tactic (used for lateral
movement).
This is another example covered later on.

20

David Bianco also created a web site and repository for the threat hunting
project.

21

It contains a large number of «hunts», ideas and descriptions of threat hunting
techniques and methods.

22

Roberto Rodriguez started a project called «The Threat-Hunter Playbook»
including a blog a GitHub, which also details some great Threat Hunting
techniques.
One example from his blog on how to detect Mimikatz will also be covered later
on.

23

Florian Roth started a project called SIGMA, which makes Security Monitoring
great again.
SIGMA is a generic format for SIEM rules, which are independant of a SIEM
solution.

24

There are SIGMA converters available for Splunk, Elastic Search and maybe
others, to convert Sigma rules to SIEM specific queries.

25

This is just a short list of SIGMAL rules for Windows Sysmon based detections.

26

SIGMA rules are written in YAML format, which is easy to write and read.

27

In early May Tavis Ormandy published PoC code against Microsoft’s AV engine,
which received quite some media attention.

28

Florian created and published a SIGMA rule to detect MS Malware Protection
Engine crashes.

29

And this is an example how a SIGMA rule can be converted to Splunk query
language.

30

Thomas Patzke, a co-founder of SIGMA, also created the EQUEL project.
So for people using Elasticsearch instead of Splunk, this might be interesting,
too.

31

Mike Haag created this great GitHub about Sysmon, DFIR and related resources.
To get started on Sysmon I suggest the RSA presentations from Mark Russinovich
as «must reads».
My Botconf talk has received some attention and good feedbacks as well, and
covers more basics than this one.

32

This is Mark’s first talk about Sysmon from RSA 2016.

33

In this presentation he covered Sysmon version 4, and up to earlier this year we
still had version 3.2 deployed.
So my last talk mostly just had examples for process create, network connection
and create remote thread event types.

34

In this years’ RSA talk Mark presented the freshly released Sysmon version 6.

35

Version 5 & 6 added a lot of new and very useful Sysmon event types, which I
will cover in this talk.

36

He also mentioned how to detect Mimikatz, which is one of the examples I’ll talk
about towards the end.

37

He also mentioned what a good Sysmon configuration is.
At our company, to create a new Sysmon config took me many hours and days
over several weeks or months of such loops.

38

These are some best practices and tipps to follow.

39

Swift On Security has put out a open source Sysmon config quite some time ago
which already has some good forks as well.
This is a good starting point for using Sysmon.

40

Now let just briefly look at some examples from my previous talk.

41

Some examples covered searching for known malicious indicators, like
- wrong image paths
- malicious command line parameters
- bad parent/child process relationship
- process injection into specific processes

42

I’ve also shown examples how to hunt for known suspicious activity like
- Lateral movement using $-shares
- Internal C&C communications over named pipes and SMB
- Rarest processes connecting thru proxy
- Suspicious Powershell usage using encoded command

43

This is an alert for detecting Jbifrost RAT, the latest variant of Adwind Java RAT.
It detects serveral typical behaviors like copying and executing Java from
AppData Roaming directory, which I’ve never seen legitimately.

44

Searching for the «/stext» command line parameter can detect several keylogger
& password stealer families abusing NirSoft tools.
During my last presentation I only mentioned the «/scomma» parameter, which I
included here as well to detect even more keylogger families.

45

The «/scomma» parameter is actually very useful, since it detects a new banking
trojan family which appeared in early April of this year.
This is a new variant of Emotet, which was also called Heodo (successor of
Geodo).
The delivery was a link in malspam emails which lead to the download of a JS
file from a web server.
If the JS file is opened it downloads and executes the payload which later
spawns a process with the «/scomma» parameter.

46

On VT you can find comments with the malware family tagging (Geodo / Heodo)
and infection chain details.

47

This is an example for detecting Powershell «WebClient.DownloadFile()» being
abused to download payloads from malicous Office macros.
By removing some obfuscation characters, some simple obfuscation techniques
can be overcome to match.

48

But of course I also saw samples using «string replacement» which didn’t match
anymore.

49

This query searches for processes (limited to Users-home dir’s) connecting to the
proxy (red part)
and correlates them to the process create events (stats by IMPHASH)
looking for occurences on less than 15 clients

50

So with this query you can hunt for SMB traffic between workstations, assuming
you can distinguish WS by hostname or IP (subnets)
If you can’t distinguish workstations easily, you can search for hosts where many
workstations connect to using SMB and filter those out.

51

This is a Sysmon event from CS psexec feature for lateral movement.
A randomly named executable is copied to the ADMIN$ share and started by
services.exe with SYSTEM rights.

52

This randomly named executable spawns a rundll32.exe process.

53

And then it uses DLL injection to inject the CS beacon payload into the rundll32
process.
You can hunt for this searching for the rarest source or taget images from
injections.

54

This is the event created when CS beacon running in rundll32 injects the
keylogger payload into winlogon.exe.
This can steal the password from a user logon or screensaver unlocking.
You can easily create a Splunk query to hunt for this.

55

So now let’s look at some examples using the new event types from Sysmon
version 5 & 6.

56

Using the «FileCreateStreamHash» event type we can get the hash from files
being downloaded by browsers.
Remember the delivery vector of emails with links to malicious JS files from
Heodo?

57

Let’s hunt for filenames with the pattern «DHL__Report__*» from
«FileCreateStreamHash» event types

58

We can see that on 3 endpoints IE downloaded such JS files with 3 different
MD5 hashes.

59

We can lookup those the hashes on VT and sure enough the first one is known
malicious.

60

And the second one is known malicious.

61

And the third one is known malicious.

62

And we can also see the randomization of filenames being served.

63

Now let’s take a look at detecting persistence methods via registry keys and
filesystem.

64

This query detects event code 13 which is registry value create
where the key contains windows currentversion run (or runonce)

65

This is used for legitimate software to persist as well as malware and possibly by
adversaries.

66

In this example the GoogleUpdate and created registry keys are legitimate.

67

This query detects processes created from the start-menu programs startup
folder, which is another easy persistence method.

68

In this example we see GoogleChromePortable.exe being started 13 times on
two endpoints.
We can lookup that MD5 hash on VT and we don’t get any hits. This should
make you go hmm and start investigation.

69

This query detects files being created under the startup folder.
In over 2 months I got less than 400 hits, although only from a subset of
endpoints.

70

Here we see Citrix and some other legitimate looking processes creating LNK
shortcut files under Startup for persistence.

71

On one endpoint we found «texter.exe» creating a «texter.lnk» shortcut under
startup.
While this is most likely legitimate, we can’t be certain until we lookup the hash
from texter.exe on VT or aquire that executable for analysis.

72

Now let’s take a look at detecting internal recon as preparation for lateral
movement.
This can mean just executing several legitimate system binaries or commands,
just like sysadmins or some users could do as well.
To make this useful you should set a threshold of different commands to be
executed within a certain time window.

73

Let’s take a look at an example from the threat hunting project.

74

This hunt is called «lateral movement detection via process monitoring»

75

The description reads: «several legitimate windows binaries executing within a
specified time frame may indicate lateral movement»
Examples of binaries include: net, ipconfig, whoami, nbtstat to name just a few.

76

This is a CAR example called «quick execution of a series of suspicious
commands»

77

This is the pseudo code looking for a number of system commands executed
within 30 minutes.

78

This query detects 3 or more of the listed 7 commands being executed within 15
minutes.
Certain parent processes are whitelisted to reduce the number of false
detections.

79

This is from a script I use for red teaming which executes a number of
commands for internal recon.
The 15 occurences of 6 different commands triggers the alert.

80

As mentioned before, normal users and sysadmins can execute such commands
legitimately and create false alerts.
Here a user started command prompt from the start menu and used the
whoami, net and ipconfig commands within 3 minutes.

81

Now let’s take a look at WMI as execution technique for lateral movement.

82

This is the WMI technique description from ATTACK under the Execution tactic,
but also Discovery and Lateral Movement tactics are in the description.
The examples section include details on Threat Groups using this technique.

83

Fireeye has blogged about APT29 using WMI for persistence of a Powershell
backdoor.
So WMI can also be used for persistence tactic.

84

This is from a presentation called «No Easy Breach» from two Mandiant guys,
which presented at SmooCon and DerbyCon last year.
I can highly recommend watching this talk video.

85

They also talked about how WMI was used for different tactics during an
intrusion.

86

In March this year Fireeye blogged about a new tool called «WMImplant» and
the Powershell code was released to the public.

87

These are the short descriptions of WMIplant functions, like meta functions and
file operations…

88

… lateral movement like «command exec», process operations like «process
start» and several system operations.

89

I did some testing with WMImplant and used Sysinternals «Process Monitor» to
analyze the process tree and command lines.
Here I used «command_exec» to run «ipconfig /all» and «systeminfo».

90

Here I ran WMImplant «process_start» from a Cobalt Strike Beacon to start calc
and notepad remotely.

91

There is a CAR for «remotely launched executables via WMI».

92

The pseudo code show the first part of the query looking for processes with a
parent process of «wmiprvse.exe»,
Which is the (Windows Management Instrumentation) «WMI Provider (Host)
Service».
It also suggests correlating these child processes with network connections using
RPC.

93

This is the Sysmon Splunk query, looking for «process create» events where the
parent process is «wmiprvse.exe»
and excluding certain images and command lines, which caused some false
detections in the past.
You want to be as specific as possible with the exclusions and not exclude
powershell.exe in general
(only in combination with certain parameters) to be able to detect many known
attack tools.

94

In the results you can see calc and notepad, which were processes started from
WMImplant
and the Powershell command lines using Invoke-Expression (IEX) and $ENV
variables with
simple obfuscation to execute commands like «ipconfig /all» and «systeminfo»

95

The same query also detects the built-in WMI lateral movement method from
Cobalt Strike,
which uses Powershell with encodedcommand as a child process spawned.

96

Next let’s look at Named Pipes used for internal P2P command and control.
This is also a built-in feature from Cobalt Strike.

97

Here you see a C&C communication graph from Cobalt Strike.
One or more hosts can be used as egress points which can connect thru proxies
and firewalls to the C&C server (indicated by green arrow).
Other compromised hosts can communicate via named pipes over SMB thru the
egress beacon host.
These are the orange arrows in the graph.

98

This is the Splunk query searching for processes which
- Connect thru a web proxy (matching proxy port and dst-IP = proxyIP-list)

and
- Create named pipes
- Correlated by ComputerName and ProcessGuid
The exclusion list is considerable to filter out known legitimate software.

99

Here’s what the results looked like from some Red Team testing.
These are different types of Cobalt Strike Beacon artifacts, some used DLL
injection into legitimate Windows binaries,
Some using the (randomized) default Beacon PipeNames, but also some
customized PipeNames.

100

Here you see the PipeNames a bit larger for readability.
I used APT666 and APT999 just for fun, these are not actual Threat Groups
known to us.

101

So after finding the PipeNames used from the egress Beacon, we can search for
these PipeNames used amongst all endpoints and processes.
Either including the default PipeNames (bottom) or just the custom ones (top).

102

Here is the result from just searching for custom PipeNames.
We see the same 3 PipeNames with count 6 from the first search, but also
another client with 2 of the same PipeNames with count 2 below.
So we discovered another compromised client which is not connecting to the
proxy for C&C.

103

This is the result from searching default and custom PN’s

104

And we can see a third compromised host which was just using the default and
no custom PN’s.

105

And now for the highlight of the talk (I hope)
let’s see how we can detect Mimikatz -- even file-less use – by using
ProcessAccess event type
The idea was (first) mentioned by Mark Russinovich in his RSA talk this year

106

This approach was also blogged about in more details by Roberto Rodriguez
(Threat Hunter Playbook)

107

In his blog post he also included the tweet from Mark about this.

108

He mentions using the values (hex) 1010 and 1410 for GrantedAccess for
Mimikatz detection.

109

Here’s the Splunk search we use for Mimikatz detection by searching for
ProcessAccess of LSASS.
During my testing I also found 0x143A used by Mimikatz (in addition to 1010 &
1410), which is not yet publically described anywhere.
The query is looking in the CallTrace for either KERNELBASE.dll and NTDLL.dll
with specific offsets or
KERNELBASE.dll and UNKNOWN, which appears when (shell-)code injection was
used to run Mimikatz.
(A limit on the length of the CallTrace helps reduce the false hits better.)

110

Here the result of testing the Mimikatz executable, which is file-based and no
UNKNOWN appears in the CallTrace.
The AccessGranted value is 1010.

111

Here the result of testing the built-in Mimikatz from Cobalt Strike, which is file-
less and UNKNOWN appears in the CallTrace.
The AccessGranted value is 1410.

112

Here the result of testing Invoke-Mimikatz using PowerPick and Cobalt Strike,
which is also file-less and UNKNOWN appears in the CallTrace.
The AccessGranted value is 143A.

113

As a hint: don’t use SourceImage to include or exclude possible Mimikatz
processes.
By using process injection (or hollowing) the source image can be chosen to be
anything, even cmd.exe as shown here.

114

I would also like to thank Dimitros Slamaris for all his public contributions on the
ThreatHunter Playbook and blog
and for the feedback on these slides with the hint to include an additional value
for granted access.

115

He analyzed the Mimikatz source code looking for OpenProcess() calls and
enumerated the values for ACCESS_MASK.
Many Mimikatz functions use value 1438 for access, so this could be added to
the list ofr detections.

116

117

118

119

